Ischemia-reperfusion reduces cystathionine-beta-synthase-mediated hydrogen sulfide generation in the kidney.
نویسندگان
چکیده
Cystathionine-beta-synthase (CBS) catalyzes the rate-limiting step in the transsulfuration pathway for the metabolism of homocysteine (Hcy) in the kidney. Our recent study demonstrates that ischemia-reperfusion reduces the activity of CBS leading to Hcy accumulation in the kidney, which in turn contributes to renal injury. CBS is also capable of catalyzing the reaction of cysteine with Hcy to produce hydrogen sulfide (H(2)S), a gaseous molecule that plays an important role in many physiological and pathological processes. The aim of the present study was to examine the effect of ischemia-reperfusion on CBS-mediated H(2)S production in the kidney and to determine whether changes in the endogenous H(2)S generation had any impact on renal ischemia-reperfusion injury. The left kidney of Sprague-Dawley rat was subjected to 45-min ischemia followed by 6-h reperfusion. The ischemia-reperfusion caused lipid peroxidation and cell death in the kidney. The CBS-mediated H(2)S production was decreased, leading to a significant reduction in the renal H(2)S level. The activity of cystathionine-gamma-lyase, another enzyme responsible for endogenous H(2)S generation, was not significantly altered in the kidney upon ischemia-reperfusion. Partial restoration of CBS activity by intraperitoneal injection of the nitric oxide scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide not only increased renal H(2)S levels but also alleviated ischemia-reperfusion-induced lipid peroxidation and reduced cell damage in the kidney tissue. Furthermore, administration of an exogenous H(2)S donor, NaHS (100 microg/kg), improved renal function. Taken together, these results suggest that maintenance of tissue H(2)S level may offer a renal protective effect against ischemia-reperfusion injury.
منابع مشابه
Ischemia-reperfusion reduces cystathionine- -synthase-mediated hydrogen sulfide generation in the kidney
Xu Z, Prathapasinghe G, Wu N, Hwang SY, Siow YL, O K. Ischemia-reperfusion reduces cystathionine-synthase-mediated hydrogen sulfide generation in the kidney. Am J Physiol Renal Physiol 297: F27–F35, 2009. First published May 13, 2009; doi:10.1152/ajprenal.00096.2009.—Cystathionine-synthase (CBS) catalyzes the rate-limiting step in the transsulfuration pathway for the metabolism of homocysteine ...
متن کاملDownregulation of cystathionine β‐synthase and cystathionine γ‐lyase expression stimulates inflammation in kidney ischemia–reperfusion injury
Inflammation plays a critical role in kidney ischemia-reperfusion injury but mechanisms of increased proinflammatory cytokine expression are not completely understood. Kidney has a high expression of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) that can synthesize hydrogen sulfide. CBE and CSE are also responsible for the synthesis of cysteine, an essential precursor for gluta...
متن کاملHydrogen-rich saline ameliorates hippocampal neuron apoptosis through up-regulating the expression of cystathionine β-synthase (CBS) after cerebral ischemia- reperfusion in rats
Objective(s): This study aimed to evaluate the potential role of hydrogen in rats after cerebral ischemic/reperfusion (I/R) injury. Materials and Methods: The experimental samples were composed of sham group, model group of rats that received middle cerebral artery occlusion (MCAO) for 2 hr followed by reperfusion for 24 hr, and the hydr...
متن کاملZofenopril Protects Against Myocardial Ischemia–Reperfusion Injury by Increasing Nitric Oxide and Hydrogen Sulfide Bioavailability
BACKGROUND Zofenopril, a sulfhydrylated angiotensin-converting enzyme inhibitor (ACEI), reduces mortality and morbidity in infarcted patients to a greater extent than do other ACEIs. Zofenopril is a unique ACEI that has been shown to increase hydrogen sulfide (H2S) bioavailability and nitric oxide (NO) levels via bradykinin-dependent signaling. Both H2S and NO exert cytoprotective and antioxida...
متن کاملHydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent.
Previous studies have demonstrated that hydrogen sulfide (H2S) protects against multiple cardiovascular disease states in a similar manner as nitric oxide (NO). H2S therapy also has been shown to augment NO bioavailability and signaling. The purpose of this study was to investigate the impact of H2S deficiency on endothelial NO synthase (eNOS) function, NO production, and ischemia/reperfusion (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 297 1 شماره
صفحات -
تاریخ انتشار 2009